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Abstract

An enzyme-linked immunosorbent assay (ELISA) was developed to detect organophosphorus 

pesticides using a phage-borne peptide that was isolated from a cyclic 8-residue peptide phage 

library. The IC50 values of the phage ELISA ranged from 1.4 to 92.1 μg L−1 for eight 

organophosphorus pesticides (parathion-methyl, parathion, fenitrothion, cyanophos, EPN, 

paraoxon-methyl, paraoxon, fenitrooxon). The sensitivity was improved 120- and 2-fold compared 

to conventional homologous and heterologous ELISA, respectively. The selectivity of the phage 

ELISA was evaluated by measuring its cross-reactivity with 23 organophosphorus pesticides, 

among which eight were the main cross-reactants. The spike recoveries were between 66.1% and 

101.6% for the detection of single pesticide residues of parathion-methyl, parathion and 

fenitrothion in Chinese cabbage, apple and greengrocery, and all of the coefficient of variation 

were less than or equal to 15.9%. Moreover, the phage ELISA results were validated by gas 

chromatography. The results indicate that isolating phage-borne peptides from phage display 

libraries is an alternative method for the development of a heterologous immunoassay and that the 

developed assay has a lower limit of detection than the chemically synthesized competitor assay.
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1. Introduction

Organophosphorus (OP) pesticides are widely used in agriculture for sucking and biting 

insect pest control but are considered hazardous because of their high toxicity to non-target 

species in the environment.1 The carry-over of OP pesticides to agricultural products 

increases human exposure. The most effective control measure depends on a rigorous 

program of monitoring the food-producing chain using sensitive and reliable analytical 

methods to minimize health risks.

With the advantage of fast detection, low cost and large parallel-processing capacity, 

immunoassays are practical analytical tools for detecting OP pesticides.2, 3 OP pesticides are 

low-molecular-weight chemicals that can accommodate binding by only one antibody. 

Therefore, they are usually detected using a competitive format. In this format, a competitor 

(a competing hapten conjugated with a carrier protein, enzyme, fluorophore, etc.) that 

competes with the analyte for binding to the antibody is a necessary reagent.4 Generally, the 

competing hapten is the same as the immunizing hapten used to elicit the analyte-specific 

antibodies (homologous assay). However, the sensitivity of the immunoassay can be 

improved by orders of magnitude if structural variants of the immunizing hapten are used as 

heterologous competitors (heterologous assay).5–8 In our previous study, the sensitivities of 

the immunoassays were improved 60-fold compared to homologous immunoassays using a 

heterologous competitor that was selected from 11 candidates.9 These heterologous assays 

require considerable effort in chemical synthesis to generate a panel of candidate haptens 

from which the best competing hapten is selected. Depending on the analyte, the synthesis 

may be particularly challenging. Additionally, some competing haptens are highly toxic and 

may pose a hazard to manufacturers and users. Thus, a simple, convenient and nontoxic 

approach to the development of heterologous immunoassays is important.

Since the phage display of peptides was first reported,10 it has been a powerful tool for a 

variety of applications, including antibody engineering11, 12 and the isolation of peptide 

ligands for antibodies and enzymes13–15 and peptide receptors for small molecules16, 17. The 

principle is that the gene fragment of a polypeptide or protein is inserted into the proper 

position of a phage coat protein gene without affecting other functions and expressed in 

progeny phage. The displayed peptide or protein maintains a relatively independent spatial 

structure and biological activity to facilitate the binding with target. When the displayed 

peptide is a random sequence, the phage mixture is a phage displayed random peptide 

library.18 To date, some random peptide libraries have been reported,19–21 and some 

libraries or phage peptide display cloning systems have also been commercialized (New 

England Biolabs).

The peptides screened from the peptide library are connected on the phage coat protein. 

Labeled anti-phage antibodies have been commercialized, allowing the phage-borne 

peptides to be directly used as a competitor without conjugation to detectors such as 

enzymes or fluorophores. Some investigators have successfully obtained phage-borne 

peptides that can be used as a competitor for low-molecular-weight compounds from a 

phage display peptide library,22–25 but few pesticides or their metabolites have been 

reported. To the best of our knowledge, only atrazine and two metabolites from pyrethroid 
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insecticides have been studied.4, 26 Kim et al. reported a heterologous enzyme-linked 

immunosorbent assay (ELISA) based on a phage-borne peptide with 100-fold higher 

sensitivity than the homologous assay.4 These articles demonstrate that phage-borne 

peptides are an alternative competitor for the development of highly sensitive competitive 

immunoassays.

In this study, a phage ELISA was developed to detect eight OPs in agricultural products 

using phage-borne peptides. Compared to the conventional ELISAs reported earlier, the 

sensitivity was improved 120- and 2-fold for homologous and heterologous ELISAs, 

respectively.

2. Materials and methods

2.1. Reagents

All reagents were of analytical grade unless specified otherwise. Parathion-methyl, 

chlorpyrifos-methyl, azinphos-methyl, dimethoate, fenitrooxon, EPN, paraoxon-ethyl, 

paraoxon-methyl, dicapthon, cyanophos and famphur were all purchased from Dr. 

Ehrenstorfer (Germany). Other pesticide standards were provided by the Jiangsu Pesticide 

Research Institute (China). Anti-OP pesticide monoclonal antibody (mAb) C8/D3, 

immunogenic hapten and synthetic heterologous hapten were produced in our laboratory 

(Fig. 1).9 Mouse anti-M13 monoclonal antibody-horse radish peroxidase (HRP) conjugate 

was purchased from GE Healthcare (Piscataway, NJ). Escherichia coli ER2738 was 

purchased from New England Biolabs (Ipswich, MA). The cyclic 8-amino-acid random 

peptide library was developed previously.21 Tetramethylbenzidine (TMB), isopropyl-β-D-

thiogalactoside (IPTG) and 5-bromo-4-chloro-3-indolyl-β-D-galactoside (Xgal) were 

purchased from Sigma (USA).

2.2. Preparation of phage-borne peptides

Using methods described by Wang et al.,21 four phage-borne peptides were selected from a 

cyclic 8-amino-acid random peptide library that selectively bound to the mAb C8/D3 (Table 

1). After amplification, the titers of C1-1, C3-3, C5-5 and C11-2 were 1.4×1012, 4.5×1011, 

5.7×1011 and 1.7×1011 pfu mL−1, respectively.

2.3. Phage ELISA

A microtiter plate was coated with C8/D3 mAb and blocked with 300 μL of phosphate-

buffered saline (PBS) containing 3% dried skimmed milk. Fifty microliters of phage 

supernatant in PBS was mixed with 50 μL of 100 μg L−1 parathion-methyl in 10% 

methanol-PBS or pure dilution buffer. The mixtures were added to the wells, and the 

preparations were incubated at room temperature for 1 h with shaking. After the wells were 

washed six times with 0.1% PBST (PBS containing 0.1% Tween 20), 100 μL of anti-M13 

phage antibody conjugated with HRP (1:5000 dilution in PBS) was added. After 1 h of 

incubation and washing six times, the amount of bound enzyme was determined by adding 

100 μL of peroxidase substrate, 25 mL of 0.1 M citrate acetate buffer (pH 5.5), 0.4 mL of 6 

mgmL−1 TMB in dimethyl sulfoxide (DMSO) and 0.1 mL of 1% H2O2. The absorbance at 
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450 nm was determined after the reaction was stopped by adding 50 μL of 2 M H2SO4 per 

well (Fig. 2).

2.4. Selection of the phage-borne peptide

The optimal concentrations of phage-borne peptide and antibody were confirmed using the 

two-dimensional checkerboard method.27 Selection of the phage-borne peptide was 

performed by phage ELISA. A series of concentrations (0.01~100 μg L−1) of parathion-

methyl, parathion and fenitrothion were prepared in 10% methanol-PBS and tested using the 

four phage ELISAs. The evaluations of the phage-borne peptides were based on the Amax/

IC50 and IC50.28

2.5. Optimization of the phage ELISA

The experimental parameters, including the ionic strength, pH value and organic solvent, 

were sequentially studied to determine the optimal conditions to achieve the maximum 

sensitivity. Competitive curves of parathion-methyl were run in PBS solutions containing 

different concentrations of NaCl (from 0.35 to 3.2 mol/L) and methanol (from 5 to 20%, 

v/v) as well as solutions with various pH values (from 5 to 9), and the evaluations of the 

parameters were based on the Amax/IC50 and IC50. The combination of low IC50 and high 

Amax/IC50 was the most desirable.

2.6. Sensitivity and selectivity of the phage ELISA

A series of concentrations (0.01~50 000 μg L−1) of 23 analytes were prepared in 10% 

methanol-PBS and tested using the phage ELISA. To evaluate the selectivity of the phage 

ELISA, the cross-reactivity (CR) was calculated based on the IC50 values using the 

following formula: CR = [IC50 (parathion-methyl) / IC50 (compound)] × 100%. Here, the 

CR of parathion-methyl was defined as 100%.

2.7. Accuracy (analysis of spiked agricultural samples)

Three different agricultural samples (Chinese cabbage, apple and greengrocery) were chosen 

to evaluate the performance of the phage ELISA. Chinese cabbage, apple and greengrocery 

were purchased from local markets (99 Ranch Market, CA, USA). All of the samples were 

spiked with known concentrations of parathion-methyl, parathion and fenitrothion in 

methanol (the final concentrations were 100 and 200 μg L−1).

All samples were cut into pieces and homogenized. The spiked samples were thoroughly 

mixed and allowed to stand at room temperature for 1 h. The sample pretreatment procedure 

was as follows. All samples (5 g) were extracted twice by a vortex mixer in 10 mL of 

methanol for 1 min and centrifuged for 5 min at 4 000 rpm. After centrifugation, the 

supernatant was transferred into a 25-mL volumetric flask and adjusted to 25 mL with PBS. 

After appropriate dilution, the solutions were analysed via the phage ELISA. Each pesticide 

was spiked and analysed in triplicate.

2.8. Gas chromatography (GC) analysis and validation

To validate the developed multi-analyte ELISA, the samples were spiked as described above 

and analysed by GC. Acetonitrile extraction solvent (10 mL) was added to 10 g of the 
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homogenized sample, and the mixture was oscillated for 1 min with a vortex mixer. Next, 

1.5 g of sodium chloride and 4 g of sodium sulfate were added, followed by another 3-min 

oscillation. After centrifugation (5 min, 4 000 rpm), 5 mL of the supernatant was transferred 

into a 50-mL flask, and the solvent was evaporated to dryness using a rotary vacuum 

evaporator with a water bath heated between 45 and 50 °C. The residue was dissolved in 1 

mL of acetone. The solution was transferred to a sample vial for analysis by GC (Agilent 

6890N-FPD) with a DB-17 fused silica capillary column (30 m×0.32 mm×0.25 μm). The 

column temperature was initially held at 80 °C for 1 min, after which it was increased to 240 

°C at 20 °C/min and held for 5 min. Nitrogen was used as the carrier gas. The matrix-

matched standard solutions were prepared by dissolving the residue in 1-mL mixed standard 

solution for the recovery study.29

3. Results and discussion

3.1. Selection of the phage-borne peptide

The Amax/IC50 and IC50 values of the four phage ELISAs for parathion-methyl, parathion 

and fenitrothion are shown in Table 2. The sensitivity of the four phage ELISAs decreased 

in the following order: C11-2 > C3-3 > C1-1 > C5-5. C11-2 was superior to the other phage-

borne peptides in terms of sensitivity when used as a competitor. Because the phage-borne 

peptide C11-2 yielded the most sensitive assays, it was used for the next study. Because the 

Amax/IC50 and IC50 values for parathion-methyl, parathion, and fenitrothion had the same 

sensitivity ranking in the four phage ELISAs, only parathion-methyl was utilised in the next 

optimization.

3.2. Optimization of the phage ELISA

Phage ELISA is based on antigen-antibody interactions, and the ionic strength and pH value 

are additional factors influencing the equilibrium constant.30 Therefore, the ionic strength 

and pH value of the working solution were optimized. The 0.14 M NaCl, pH 7.4 PBS buffer 

was selected for the phage ELISA because it exhibited superior sensitivity (Table 3 and 4). 

Organic solvent can not only improve the solubility of the analyte but also extract the 

analyte in the pretreatment. Based on its weaker effect on antigen antibody binding, 

methanol is commonly selected as an organic co-solvent in immunoassays. When the final 

concentration of methanol was less than or equal to 5% (50 μL of phage supernatant in PBS 

was mixed with 50 μL of analyte in 10% methanol-PBS), the effect of methanol on the 

phage ELISA was negligible (Fig. 3). In conclusion, the optimized working solution was 

0.14 M NaCl and pH 7.4 PBS buffer containing 5% methanol.

3.3. Sensitivity of the phage ELISA

As shown in Table 5, 23 OP pesticides were evaluated using the phage ELISA. The IC50 

ranged from 1.4 to 92.1 μg L−1 for the eight OP pesticides (parathion-methyl, parathion, 

fenitrothion, EPN, cyanophos, paraoxon-methyl, paraoxon-ethyl and fenitrooxon), and the 

limits of detection (LOD, IC10) ranged from 0.6 to 29.2 μg L−1. For the same mAb,9 the 

sensitivity of the phage ELISA was improved 2-fold and 120-fold compared to the 

heterologous ELISA (with the competitor prepared by chemical synthesis) and homologous 

ELISA, respectively. This result indicated that the phage-borne peptide was an alternative 
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competitor for the development of a heterologous ELISA, and the assay had a lower limit of 

detection compared to the chemically synthesized competitor assay.

3.4. Selectivity of the phage ELISA

The selectivity of the phage ELISA was evaluated by measuring the cross-reactivities (CRs) 

with the 23 OP pesticides, and the results are summarized in Table 5. Parathion-methyl, 

parathion, fenitrothion, EPN, cyanophos, paraoxon-methyl, paraoxon-ethyl and fenitrooxon 

were the main cross-reactants among the 23 OP pesticides, and the CRs for the phage 

ELISA were similar to those from both the conventional ELISA and 

immunochromatographic assay.9 Therefore, the developed phage ELISA was selective for 

the eight OP pesticides.

3.5. Analysis of spiked samples

Matrix interference is one of the most common challenges in developing an immunoassay. It 

can be reduced in a number of ways, and dilution with buffer is a commonly used procedure. 

Based on the optimized methanol concentration for the phage ELISA, the final extract of the 

Chinese cabbage, apple and greengrocery samples (containing approximately 80% 

methanol) was diluted 8-fold to remove the methanol effect. Using this dilution, the 

absorbance values of the standard curves prepared during the matrix dilution were similar to 

those in the matrix-free buffer (Fig. 4). This result indicates that 8-fold dilution (the total 

dilution was 80-fold: 2-fold by mixing with phage in the phage ELISA procedure, 5-fold 

during extraction and 8-fold to remove the methanol effect) was adequate to remove the 

matrix interference from the samples. Therefore, the final extract of the spiked samples was 

diluted 8-fold before the phage ELISA analysis.

The measured recoveries from the spiked samples are summarized in Table 6. The average 

recoveries ranged from 66.1% to 101.1% for parathion-methyl, parathion and fenitrothion. 

The coefficients of variation (CV) were less than or equal to 15.9%. According to the 

maximum residue limit (MRL) of Codex Alimentarious Commission (CAC), the MRL of 

parathion-methyl, parathion and fenitrothion in most fruits and vegetables, including apple, 

is greater than or equal to 0.1 mg kg−1. Thus, the phage ELISA met the requirement for 

detecting OP pesticide residues in most samples.

3.6. Validation of the phage ELISA

To confirm the accuracy and applicability of the phage ELISA, the spiked samples were 

analysed by GC. The average recoveries by GC for all samples ranged from 87.1% to 

108.5%, and the CVs were less than or equal to 11.7% (Table 6). The phage ELISA and GC 

techniques yielded comparable results, indicating that the developed phage ELISA was 

reliable and accurate.

4. Conclusions

In this study, a phage ELISA was developed to detect eight OP pesticides in agricultural 

samples using a phage-borne peptide. Using the same mAb, the sensitivity of the phage 

ELISA was improved 2- and 120-fold compared to the heterologous ELISA (where the 
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competitor was prepared by chemical synthesis) and homologous ELISA, respectively. The 

accuracy and precision of the assay were validated by GC, and the agreement between the 

phage ELISA and GC was high. Therefore, the phage ELISA presented in this study is 

suitable as a convenient quantitative tool for the rapid screening of the eight OP pesticides in 

agricultural products. Compared with synthesizing competitors, isolating competitors from 

phage display libraries is an efficient method for accelerating the development of highly 

sensitive competitive immunoassays. To the best of our knowledge, this is the first time that 

a phage-borne peptide has been applied in the multi-analyte detection of OP pesticides.
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Fig. 1. 
Structures of the immunogenic hapten and synthetic heterologous hapten.
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Fig. 2. 
Schematic diagram of phage ELSIA.
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Fig. 3. 
Effect of methanol on the phage ELISA. Parathion-methyl was run in PBS solutions 

containing different concentrations of methanol. Each point is the mean of three wells.
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Fig. 4. 
Standard inhibition curves of parathion-methyl in PBS and different matrices by phage 

ELISA (n = 3). The extracts of Chinese cabbage, apple and greengrocery samples were 

diluted 8-fold.
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Table 1

Peptide sequences of four competitive clones.

Clone name Sequence

C1-1 PPWPARPG

C3-3 PPWPLRPG

C5-5 APWPPRPG

C11-2 SPPWPPRP
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Table 3

Average IC50 and Amax/IC50 values of the phage ELISA in PBS solutions containing different concentrations 

of NaCl.

Ionic strength (M)
Parathion-methyl

Amax IC50 (μg L−1) Amax/IC50

0.35 0.313 0.7 0.465

0.07 1.063 0.8 1.274

0.14 1.682 1.2 1.430

0.2 1.909 1.5 1.270

0.4 1.888 1.6 1.176

0.8 2.008 1.8 1.091

1.6 2.111 2.1 0.989

3.2 2.117 4.5 0.467

RSC Adv. Author manuscript; available in PMC 2015 August 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hua et al. Page 16

Table 4

Average IC50 and Amax/IC50 values of the phage ELISA in PBS solutions of various pH.

pH value
Parathion-methyl

Amax IC50 (μg L−1) Amax/IC50

5 1.949 5.9 0.332

6 1.837 2.5 0.733

6.5 1.973 1.7 1.146

7 1.993 1.7 1.160

7.4 1.824 1.5 1.188

8 1.760 1.5 1.131

9 0.726 1.2 0.597
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Table 5

IC10 and IC50 values and cross-reactivity of a set of analogues structurally related to parathion-methyl by 

phage ELISA.

Compound Structure IC10 (μg L−1) IC50 (μg L−1) CR (%)

Parathion-methyl 0.6 1.4 100

Parathion 1.6 4.2 33.3

Fenitrothion 1.1 2.7 51.9

Cyanophos 3.4 10.3 13.6

EPN 5.9 21.1 6.6

Paraoxon-methyl 29.2 92.1 1.5

Paraoxon 29.0 85.7 1.6
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Compound Structure IC10 (μg L−1) IC50 (μg L−1) CR (%)

Fenitrooxon 28.9 88.7 1.6

Dicapthon 59.3 199.6 0.7

Famphur 5850.1 17142.1 0.008

Isocarbophos >50000 >50000 <0.003

Fenthion >50000 >50000 <0.003

Triazophos >50000 >50000 <0.003

Chlorpyrifos >50000 >50000 <0.003
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Compound Structure IC10 (μg L−1) IC50 (μg L−1) CR (%)

Chlorpyrifos-methyl >50000 >50000 <0.003

Phoxim >50000 >50000 <0.003

Malathion >50000 >50000 <0.003

Phorate >50000 >50000 <0.003

Dimethoate >50000 >50000 <0.003

Acephate >50000 >50000 <0.003

Dichlorvos >50000 >50000 <0.003

Tolclofos-methyl >50000 >50000 <0.003
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Compound Structure IC10 (μg L−1) IC50 (μg L−1) CR (%)

Azinphos-methyl >50000 >50000 <0.003
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